RUSCODIBENZORURAN, A NEW DIBENZOFURAN FROM RUSCUS ACULEATUS L. (LILIACEAE)

M. A. ELSOHLY, T. D. J. SLATKIN, J. E. KNAPP, N. J. DOORENBOS, T. M. W. QUIMBY and P. L. SCHIFF, JR. *

Department of Pharmacognosy, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, U.S.A.

and

E. M. GOPALAKRISHNA and W. H. WATSON Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, U.S.A.

(Received in USA 27 December 1976; Received in UK for publication 9 February 1977)

Abstract—The structure of ruscodibenzofuran, a new naturally occurring dibenzofuran from the roots of Ruscus aculeatus L. (Fam. Liliaceae), was determined by spectral means, the synthesis of model compounds and was confirmed by X-ray diffraction analysis.

Ruscus aculeatus L. (Liliaceae) has been used medicinally as a diuretic, an anti-inflammatory and to prevent atherosclerosis and circulatory insufficiency.

In a previous communication' we have reported the isolation of two new substances from the roots of the plant, the structure of one of which was proven to be 2.5 - diacetyl - 6 - hydroxybenzofuran, named euparone.' The structural analysis of the other compound, designated as a phenolic substance, m.p. 168°, is the subject of this report and we now name it ruscodibenzofuran 1.

Ruscodibenzofuran 1, C16H14O3 (high resolution mass spectrum) was isolated as rectangular crystals, m.p. 168°, and was optically inactive. The IR spectrum showed bonded hydroxyl and carbonyl absorptions (3420 and 1640 cm, respectively). The bonded nature of the phenolic hydroxy was substantiated by a signal at δ 12.75 in the PMR spectrum. Evidence for the presence of only one phenolic hydroxyl group was shown by the formation of a monoacetate 2 and a monomethyl ether 3, with molecular formulas $C_{18}H_{16}O_4$ and $C_{17}H_{16}O_{33}$ respectively (mass spectra). In addition to the strongly bonded phenolic proton, the PMR spectrum of ruscodibenzofuran showed three methyl groups at δ 2.42 (s, 3H) and δ 2.59 (s, 6H) for aromatic methyls and/or methyl ketones. The aromatic region showed one downfield proton (δ 8.01, s) and three protons centered at δ 6.96.

When O-methylruscodibenzofuran was oxidized with sodium hypochlorite, the corresponding carboxylic acid 4 was obtained, $C_{16}H_{14}O_4$ (mass spectrum). The IR spectrum of the carboxylic acid showed only one carbonyl absorption (1700 cm⁻¹) indicating that ruscodibenzofuran contained only one carbonyl group in the form of a methyl ketone. Oxidation of the acid 4 with alkaline KMnO₄ resulted in the isolation of a tricarboxylic acid 5, the trimethyl ester of which 6 was prepared by treatment with diazomethane.

The trimethyl ester 6, $C_{19}H_{16}O_{8}$ (mass spectrum) showed four methoxy singlets in the PMR (δ 3.98, 4.03, 4.07, 4.09) along with four aromatic protons, three of which resonated downfield (δ 9.21, s, 1H) and δ 8.03 (s, 2H). One of these aromatic protons corresponds to that which was *ortho* to the acetyl function in ruscodibenzofuran and the other two must have been protons which were *ortho* to methyl groups, shifted downfield by conversion of the methyls to methoxycarbonyls.

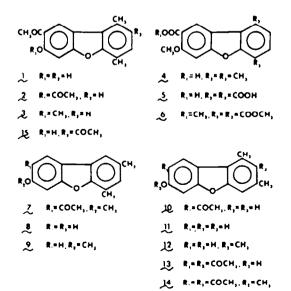
These data suggested a dibenzofuran structure with one acetyl group, one phenolic function and two aromatic methyl groups. As the literature lacked compounds with appropriate substituents, it was necessary to prepare a few dibenzofurans with the required substitution for comparison with ruscodibenzofuran. Eight - acetyl - 2.4 - dimethyl - 7 - methoxydibenzofuran 7 was synthesized through a mixed Ulmann coupling of 2.4 - dimethyl - 6 - iodoanisole with 6-iodoresorcinol dimethyl ether, followed by reflux with HBr to yield 2.4 - dimethyl - 7 - hydroxydibenzofuran 8 as one of the products.

Treatment of 8 with dimethylsulphate and potassium carbonate followed by Friedel-Crafts acetylation (acetyl chloride and aluminum chloride) gave the desired product 7. A comparison of the physical and spectral data of 7 and O-methylruscodibenzofuran 3 is shown in Table 1. This comparison indicates that the two compounds were similar but not identical. In addition, the UV spectra of both compounds supported a dibenzofuran chromophore' and the stability of dibenzofurans toward mass fragmentation10 was evident in both cases. Furthermore, the PMR spectra of both compounds were different in the aromatic and the methyl absorption regions. Finally, and of great importance, was the presence of an aromatic proton at δ 7.46 (s, 1H) assigned to H-1. in the PMR spectrum of 7 which was absent in that of O-methylruscodibenzofuran. This fact suggested that C-I was substituted with a methyl group in ruscodibenzofuran. Thus, ruscodibenzofuran was assigned as either 10 or 1, and the synthesis of both compounds (or their methyl ethers) attempted.

The same procedure described for the synthesis of 7 was utilized for the synthesis of O-methyl 10 starting

[†]Present address: Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MI 38677, U.S.A.

Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MI 38677, U.S.A.


Table 1. Comparison of the physical and spectroscopic data of O-methylruscobidenzofuran 3 and 8-acetyl-2,4-dimethyl-7-methoxydibenzofuran 7

	:4;->°	155°
MelH nm (log)	227 (4.67), 249 (4.55), 265 (4.72) 297 (ab) 4.16), 327 (ab)(4.13) and 327 (3.55)	226 (3.90), 241 (3.88), 260 [4.10] 296 (ah)(3.20) and 331 (3.15)
60 MHz	7.41 (8 % 380, 7.47 (80(38), 2.62 (8, 48), 3.94 (80(38), 8.31 (8)18), 7.46 (8)18), 7.08 (8)718), Apd 7.00 (8) 380	2.55 (all3H), 2.67 (a)(3H), 2.70 (a)(3H), 3.95 (a)(3H), 8.33 (a) (1H), 7.09 (a)(1H), 7.02 (a)(1H), and 7.00 (a)(1H).
M', m's (Intensity)	<pre>% 368 .48 . 253 (1001, 238 (11), 225</pre>	7 ⁴ 265 (60), 258 (100), 238 (8), 225 (4), 210 (4), 194 (6), 126.5 (5), and 119 (7). Molecular formula CluB ₁₆ S ₃
M, T/r Fragmenta- tin Pricess)	439 - calc. 238.8+) (M*	239 [cmlc. 235.54](M* -> 253) 224 [cmlc. 223.59](M* -> 238)

8-Acetyl-2,4-dimethyl-7-methoxy-dibenzofuran 7

O-Methylruscodibenzofuran 3

from 3,5 - dimethyl - 6 - iodoanisole. The intermediate product 11 was isolated and characterized (MS, PMR. UV, IR, m.p.) and its O-methyl ether 12 prepared. Friedel-Craft's acetylation of 12 did not result in the isolation of the required product. Instead, two diacetylated compounds 13 and 14 were formed (MS, PMR) and direct comparison with either ruscodibenzofuran or its methyl ether was not possible. However, acetylation (Friedel-Crafts) of ruscodibenzofuran afforded an acetyl derivative 15, C14H14O4 (MS), which was clearly different from 13. The PMR of 2-acetyl-ruscodibenzofuran 15 showed that one aromatic proton was shifted downfield (δ 7.55) by the introduction of the new acetyl group indicating that there was an aromatic proton at C-3. This fact, in conjunction with all other data, indicated that ruscodibenzofuran should be represented as 1. The synthesis of 1 was unsuccessful because of the failure of 6 bromo - 2.5 - dimethyl anisole to couple with 4-iodoresorcinoldimethylether under the reaction conditions for mixed Ullmann coupling previously used. Attempts for its synthesis using other reaction conditions are currently under investigation.

Concurrently with the synthetic effort, X-ray diffraction analysis of ruscodibenzofuran confirmed its structure as 1. A crystal of ruscodibenzofuran was ground into a sphere of radius 0.15 mm. The crystal was found to belong to the monoclinic space group P2/C and room temperature cell dimensions were obtained from a leastsquares fit to 15 medium and high angle reflections yielding a = 8.359(3), b = 6.865(3), c = 21.958(11) Å, $\beta =$ 92.58(3)°. Intensity data for $2\theta < 140^\circ$ were collected on a Syntex P2₁ diffractometer using the $\theta: 2\theta$ scan technique and graphite monochromatized $CuK\alpha$ radiation (λ = 1.54178 Å). A total of 2352 independent reflections were measured and 1979 had intensities greater than $3\sigma(1)$. The structure was solved by direct methods using MUL-TAN.12 Anisotropic least-squares refinement yielded an R value of 0.056 using all 2352 reflections. Hydrogen atom positions were obtained from a difference map and their contributions to the structure factors were included in the calculation.

Figure 1 shows an ORTEP¹¹ drawing of the molecule while bond distances and angles are listed in Tables 2 and 3, respectively. A least-square plane fitted to all

Table 2. Intramolecular bond distances with estimated standard deviations in parentheses

28.30	CTOTANOE, A
2 (4)- 74,	1.50 ()
#1134/1129	11.488 2.47
#(0) ₩1. €.	2,490 (3)
7, ₹° = €° •	1.891 ()
at(4) 4 1 15 1	1,-91 (4)
t(4) + 116	1.386 (3)
0.5y = 0,13*	ા માટે ફેર્કો
\$ \$, - \$, \$.	102 jay
p(6)-x(1)	1455 (4)
?	• • • 07 () • 1
of the Alba	- 14 (1)
n, 8, = 1, 9	II sàà liệi 1. 650 liệt
ស៊ី ១%- ក្បូកចិត្ត	
7, W. + . W	
****	\$.*n1 - 35
1, 12 , - 21 12]	1.:8± (4) 2.455 (4)
2(1)-2(13)	1,405 (3)
2 (3) + 2 (4)	1.469 31
and the part of the common of	1.495 (3)
To be the second of the second	1.235 (3)
#(11) = (119)	4.43) (T.

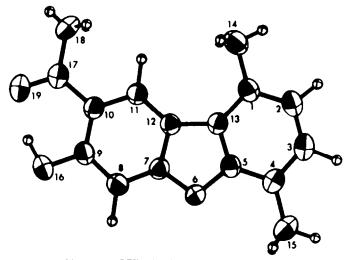


Fig. 1. An ORTEP drawing of ruscodibenzofuran 1.

Table 3. Bond angles, with estimated standard deviation in

		
ATOM	ANGLE, TEXT.	
7 14 47 1747 7 F	18/2,4 (2)	
A Paragraph of the control of the co	19114 94	
	111.4	
	20.6	
	722.6 12	
5 (5 E 5 4 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5	199.6 1g 113.6 g	
n (h2h 1/2) (sh	17.5.5	
0	100 100 100 100 100 100 100 100 100 100	
	100.4	
-		
1. 5/=1.5/=1.5/ 5 5 15/4 15/5		
1 5 = 1/4 = 1111 1 60=1 11=1111	125.6 1	
	111.4 ()	
\$14 (=0, t) = 1		
	1.65 S	
2,7)=2,31=1191	116.5 (2 171.7 (1 117.6 (2)	
#(#*=#**; = # .##	191.7 117.6	
*** = 1,74)= +1 0	117.6 10	
1:101-101-111	****	
2 9 -2(101-101) 1 -1	119.4 2	
	100	
7 9 47,1914 1 .71	120.11.0	
111. r= 1111.}= 1 1.	114.8 25	
"(111'-" 11 - " ")	1:8.2	
141 -5,12 -5,131	146.7 (2)	
1,13 = 1,121=1.07	175.4	
N 18740.1*(40 10	1 4 . 1 . 1	
1112 -d 131-m15.	176(1	
11,-0110-25	119.7	
7(13)= 1(14)= ((19) ************************************	120.0	
rightan irra rilar	1911	
197=311 M=318	<u> </u>	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	••••	

nonhydrogen atoms shows a maximum deviation from planarity of 0.05 Å by 0(16) and a maximum ring atom deviation of 0.03 Å by 0(6). A strong hydrogen bond between the hydroxyl hydrogen atom and the carbonyl oxygen atom (1.61 Å) assists in the maintenance of planarity. Least-squares planes fitted to the individual rings indicate the two 6-membered rings make angles at 0.3° and 0.5° with the 5-membered ring. The average C-C distance in the phenyl rings is 1.393 Å; however, there is considerable variation due to substituents.

This is the first report of ruscobidenzofuran in nature and the first typical dibenzofuran to be isolated from higher plants.

EXPERIMENTAL14

Isolation. The isolation of ruscodibenzofuran 1 from the roots of Ruscus aculeatus L. was previously reported where the

compound was designated as an incompletely characterized phenol. Ruscodibenzofuran crystallized from chloroform—ethanol as yellowish green rods and rectangular plates; m.p. 168° ; $[\alpha]_D \pm 0$ (c 1.0, CHCl.); UV (MeOH): 277 (4.47), 242 (4.41), 263 (4.61) and 347 (3.67) nm; UV (0.1 NKOH in MeOH): 207 (4.78), 238 (4.38), 275 (4.60), 301 (sh, 4.00), 311 (sh, 4.00) and 375 (3.76) nm; IR (CHCl.): 3420, 2950, 1640, 1240, 1150, 1105 and 1057 cm ¹; PMR (CDCl.): δ 2.42 (3H, s) 2.59 (6H, s) 6.96 (3H, m), 8.01 (H, s) and 12.75 (1H, s). High resolution mass spectrum showed the molecular ion (81%) at mle 254.0914 (calculated 254.0943 for $C_{18}H_{14}O_{3}$) and other major peaks were at mle (composition, %) 239 ($C_{18}H_{14}O_{3}$, 100), 236 ($C_{18}H_{12}O_{2}$, 4), 211 ($C_{14}H_{14}O_{2}$, 5) and 183 ($C_{14}H_{14}O_{3}$, 100), 236 ($C_{18}H_{12}O_{2}$, 4), 211 ($C_{14}H_{14}O_{2}$, 5) and 183 ($C_{14}H_{14}O_{3}$, 120).

O-Acetylruscodibenzofurun 2. Acetylation of 20 mg of 1 with 1 ml of acetic anhydride and 3 ml of pyridine for 24 h at room temperature followed by the usual work-up and recrystallization from chloroform-ethanol afforded 21 mg of 2, m.p. 154°; UV (MeOH): 220 (4.48), 240 (4.46), 258 (4.60), 286 (sh, 4.06) and 315 (sh, 3.58); IR (KBr): 1760, 1674 and 1210 cm⁻¹; PMR (CDCl₃): & 2.41 (3H, s), 2.53 (3H, s), 2.65 (3H, s), 2.74 (3H, s), 7.07 (1H, s), 7.11 (1H, s), 7.29 (1H, s) and 8.38 (1H, s); MS: M⁺ mle 296 (10%) (C₁₀H₁₀O₄), 254 (100), 240 (12) and 183 (6).

O-Methylruscodibenzofuran 3. Methylation of 20 mg of 1 by repeated addition of dimethyl sulphate and 2% sodium methoxide in methanol until the solution did not change color in the presence of excess sodium methoxide was achieved. The solvent was evaporated and the residue partitioned between chloroform (2×30 ml) and 2% sodium hydroxide solution (10 ml). The chloroform extract was dried (anhy. Na₂SO₄), filtered and evaporated. Crystallization of the residue from chloroformethanol (1:1) afforded white needles of 3 (18 mg). For physical and spectral data of 3 see Table 1.

Oxidation of O-methylruscodibenzofuran 3. Sodium hypochlorite (10 ml of 2% aqueous solution) was added slowly to a solution of 3 (18 mg) in 1,4-dioxan (5 ml) and the mixture stirred overnight. The solution was concentrated to a minimum volume, diluted with water (15 ml) and unreacted material extracted with chloroform (2 × 20 ml). The aqueous layer was acidified (pH 2) with 10% sulfuric acid and extracted with chloroform (3 × 20 ml). Evaporation of the chloroform after drying (anhy. Na₂SO₄) afforded a residue which upon treatment with ethanol gave white crystals (16 mg) of 4; m.p. 225–230°; UV (MeOH): 234 (3.50), 252 (3.42), 293 (2.96) and 303 (2.78) nm; IR (KBr): 1700, 1620, 1235 and 1075 cm 1 ; PMR (CDCl₁): δ 2.50 (3H, s), 2.75 (3H, s), 4.13 (3H, s), 7.08 (1H, s), 7.10 (1H, s), 7.25 (1H, s) and 8.80 (1H, s); MS: M * mle 270 (100%) ($C_{14}H_{14}O_{4}$), 252 (7), 211 (17), 197 (11), 183 (10) and 152 (6)

Oxidation of 8 - carboxy - 1,4 - dimethyl - 7 - methoxydibenzofuran 4. A solution of 4 (13 mg) in warm 2% sodium hydroxide (100 ml) was treated with potassium permanganate (1 g) and the mixture stirred for 90 min at 70°. The excess permanganate was removed by passing SO₂ into the solution with the formation of a yellow precipitate. The precipitate was filtered, washed with water followed by ethanol and dried to give 12 mg of 5. Methylation of 5 using ethereal diazomethane (5 ml) (prepared from N - methyl, N - nitroso - p - toluenesulphonamide and potassium hydroxide¹³) followed by crystallization from methanol yielded pale yellow crystals of 6 (12 mg), m.p. 169°; UV (MeOH): 236 (4.30), 282 (3.90) and 351 (3.70) nm; IR (KBr): 1725, 1633, 1280, 145 and 1085 cm⁻¹; PMR (CDCl₃): δ 3.98 (3H. s), 4.03 (3H. s), 4.07 (3H. s), 4.10 (3H, s), 7.25 (1H. s), 8.03 (2H, s) and 9.21 (1H, s); MS: M^{*} mle 372 (82%) (C₁₈H₁₆O₆), 311 (9), 295 (8), 281 (8), 251 (11), 221 (11) and 155 (18).

4-lodoresorcinoldimethylether 16. An ice cold solution of 2,4dimethoxyaniline (5 g) in 10% sulphuric acid (50 ml) was treated with sodium nitrite (3 g, added in portions). Potassium iodide (5 g) was then added in small amounts and the deep brown precipitate was extracted with chloroform (3×100 ml). The chloroform extract was washed with 10% sodium thiosulphate solution $(3 \times 10 \text{ ml})$, followed by water $(2 \times 50 \text{ ml})$, dried and evaporated to dryness. The brown oily residue (8 g) was chromatographed over silicic acid (30 g) and eluted with chloroform. Evaporation of the fraction containing the first yellow zone afforded a yellow oil (4g) which crystallized on standing in the refrigerator into needles of 16; m.p. 40-41°; UV (MeOH): 211 (4.40), 237 (4.21), 284 (3.60) and 292 (sh, 3.57) nm; IR (KBr): 3030, 1580, 1310, 1214, 1055, and 790 cm 1 : PMR (CDCl₃): δ 3.75 $(3H, s, OCH_3)$, 3.80 $(3H, s, OCH_3)$, 6.23 (1H, dd, J = 9Hz) and 3 Hz, H-6), 6.37 (1H, d, J = 3 Hz, H-2) and 7.54 (1H, d, J = 9 Hz, H-5); MS: M* mle 264 (100%) (C₀H₀IO₂), 249 (5), 221 (8) and 127

2,4-Dimethyl-6-iodoanisole 17. A stirred solution of 2,4-dimethylphenol (5 g) in 10% aqueous ammonia was treated with a solution of iodine (10 g) in 30% potassium iodide (10 ml) by dropwise addition over a period of 30 min. The mixture was allowed to stir for one additional hour after which it was poured onto ice cold 10% sulphuric acid (50 ml). The resulting brown gummy precipitate was extracted with chloroform (3 × 100 ml), the chloroform solution washed with 10% sodium thiosulphate (3 × 50 ml), then with water (2 × 50 ml), dried, filtered and evaporated to afford a brown oil (9.30 g). This oil was chromatographed over silicic acid (30 g) and eluted with chloroform. The residue (5.5 g) obtained after evaporation of the first fraction (500 ml) was methylated with dimethyl sulphate (5 ml) and anhyd. potassium carbonate (3 g) in refluxing acetone to yield after work-up a yellow orange oil of 17 (5.7 g); UV (MeOH): 217 (4.18), 230 (sh, 4.00), 277 (sh, 3.13) and 284 (sh, 3.12) nm; IR (KBr): 2950, 1600, 1470, 1275, 1230, 1124, 1010 and 853 cm 1; PMR (CDCl_s): 8 2.20 (3H, s), 2.27 (3H, s) for two aromatic methyls, 3.73 (3H, s, OCH₃), 6.92 (1H, br, s, H-3) and 7.38 (1H, br. s, H-5); MS: M* m/e 262 (100) (C.H., IO).

2.4 - Dimethyl - 7 - hydroxydibenzofuran 8.4 - Iodoresorcinoldimethylether 16 (1.2 g) and 2,4 - dimethyl - 6 - iodoanisole 17 (0.4g) were thoroughly mixed with finely powdered copper (10 g) and the mixture heated (oil bath) for 90 min at 220°. The product was cooled to room temperature, extracted with methylene chloride and filtered. Evaporation of the solvent afforded a dark brown viscous residue (0.61 g) which was partially purified by passing through a silicic acid column (10 g) and elution with methylene chloride. The solvent was evaporated and the residue (0.47 g) refluxed with hydrobromic acid (48%, 7.5 ml) for 6 h under nitrogen. The cooled reaction mixture was alkalinized (pH 11) with 5N KOH and extracted with methylene chloride (3× 20 ml). The basic fraction was acidified (pH 2) with conc. HCl and extracted with methylene chloride (4 × 30 ml). The combined extracts were washed with water (2 × 20 ml), dried (anhy. Na₂SO₄) and evaporated to dryness. The residue (0.29 g) was chromatographed over silicic acid (40 g) and eluted with methylene chloride in 10 ml fractions. Evaporation of fractions 13-15 and crystallization of the residue from chloroform-methanol (2.1) afforded 8 as light buff needles (40 mg), m.p. 119°; UV (MeOH): 220 (4.69), 229 (sh. 4.57), 240 (sh. 4.41), 259 (4.35), 300 (sh, 4.37) and 307 (4.41) nm; IR (KBr): 3300, 1631, 1594, 1388, 1252, 1132 and 942 cm⁻¹; PMR (CDCl₃): δ 2.41 (3H, s), 2.49 (3H,

s), 5.47 (1H, br, s, phenolic OH), 6.76 (1H, dd, J = 9, 3 Hz, H-8), 6.96 (1H, s, H-3), 7.00 (1H, d, J = 3 Hz, H-6), 7.41 (1H, s, H-1) and 7.65 (1H, d, J = 9 Hz, H-9); MS: M* m/e 212 (100%) $C_{14}H_{12}O_2$), 211 (35), 198 (20), 197 (37), 149 (6) and 115 (5).

2,4 - Dimethyl - ? - methoxydibenzofuran 9. Methylation of 8 (35 mg) using dimethyl sulphate (1 ml) and anhydrous potassium carbonate (500 mg) in anhydrous acetone resulted in the formation of a faint yellow oil (37 mg) of 9; MS: M* mle 226 (76%) for C_1 *H₁₂O₂: PMR showed a methoxy singlet at δ 3.81.

8 - Acetyl - 2,4 - dimethyl - 7 - methoxydibenzofuran 7. Aluminum chloride (anhyd., 1 g) was added to a solution of 9 (36 mg) in methylene chloride (10 ml) and the mixture heated to reflux. Acetyl chloride (0.5 ml) in methylene chloride (5 ml) was added slowly from a pressure equalizing dropping funnel and reflux continued for 2 h. The reaction mixture was cooled to room temperature and partitioned with 10% HCl. The organic layer was washed with water (2 × 15 ml), dried (anhyd. Na₂SO₄), filtered and evaporated to dryness. Crystallization of the residue from chloroform-ethanol afforded faint yellow prisms and large needles of 7 (30 mg), m.p. 147-149°. For physical and spectral data of 7 see Table 1.

1,3 - Dimethyl - 7 - hydroxydibenzofuran 11. Ullmann coupling of 16 (12.5 g) and 3.5 - dimethyl - 6 - iodoanisole (2.5 g) following a procedure similar to that discussed under synthesis of 8 resulted in the formation of 11 (230 mg), m.p. 108-113°; UV (MeOH): 222 (4.79), 240 (sh, 4.47), 260 (4.36), 300 (4.42), 309 (4.29) and 340 (sh, 2.63) nm; IR (KBr): 3365, 2950, 1600, 1450, 1150 and 960 cm '; PMR (CDCl₃): 2.43 (3H, s), 2.62 (3H, s), 5.52 (1H, br, s, phenolic OH), 6.70-7.10 (4H, m) and 7.66 (1H, d, J = 9 Hz, H-9); MS: M* m/e 212 (100%) (C₁₄H₁₂O₂), 211 (51) and 197 (49).

2,8 - Diacetyl - 1,3 - dimethyl - 7 - hydroxydibenzofuran 13. Methylation of 11 (75 mg) using dimethyl sulphate (1 ml) and anhyd. K_2CO_1 (500 mg) in refluxing acetone (20 ml) resulted in the formation of an oily product 12 (73 mg); PMR methoxy signal at δ 3.87. The crude 12 was acetylated as described under synthesis of 7 to give a product which showed one major spot on TLC (R_1 0.66) using benzene-ethyl acetate (9:1). Preparative-layer chromatography of the reaction product using the same system resulted in the isolation of 13 (R_1 0.66), 13 mg), m.p. 190-195° dec.; IR (KBr): 1675, 1640, 1615, 1255, 1147 and 1055 cm⁻¹; PMR (CDCI₁): δ 2.48 (3H, s), 2.65 (3H, s), 2.70 (3H, s), 2.74 (3H, s), 6.77 (1H, s), 6.94 (1H, s), 8.06 (1H, s, H-9) and 12.81 (1H, s, strongly bonded phenolic OH); MS: M^* mle 296 (54%) ($C_{10}H_{10}O_2$), 281 (76), 268 (77) and 253 (100).

2-Acetylruscodibenzofuran 15. Friedel Craft's acetylation of 1 (20 mg) in a similar manner as discussed under synthesis of 7 resulted in the formation of yellow product containing some unreacted material. The crude product was purified by preparative layer chromatography using benzene-ethyl acetate (3-1). Elution of the zone at R_t 0.65 and crystallization of the residue from chloroform-ethanol afforded faint yellow needles of 15 (12 mg), m.p. 170°: IR (KBr): 3440, 2920, 1670, 1640, 1250 and 1115 cm⁻¹; PMR (CDCI₃): 8 2.56 (3H, s), 2.65 (3H, s), 2.75 (3H, s), 2.88 (3H, s), 7.10 (1H, s, H-6), 7.55 (1H, s, H-3), 8.38 (1H, S, H-9) and 12.80 (1H, s, bonded phenolic OH); MS: M⁺ mle 296 (53%) (C₁₈H₁₆O₄), 281 (100) and 253 (10).

REFERENCES

 J. Balansard, Med. Trop. 11, 638 (1951); Chem. Abstr. 46: 1716.
 L. Chevillard, M. Ranson and B. Senault, Med. Pharmacol. Exp. 12, 109 (1965); Chem. Abstr. 62: 13732.

¹G. B. Iskenderov, Azerb. Med. Zh. 44, 27 (1967); Chem. Abstr. 68: 94482.

⁴E. Bombardelli, A. Bonati and B. Gabetta, Ger. Offen. 2, 202, 393 (1972); Chem. Abstr. 78: 30161.

YM. A. ElSohly, J. E. Knapp, D. J. Slatkin, P. L. Schiff, Jr., N. J. Doorenbos and M. W. Quimby, Lloydia 38, 106 (1975).

*Ibid, J. Pharm. Sci., 63, 1623 (1974).

 R. Dyer, Application of Absorption Spectroscopy of Organic Compounds, pp. 90-91. Prentice-Hall, Englewood Cliffs, New Jersey (1965).

*H. Erdtman, F. Haglid and N. E. Stjernstrom, Acta Chem.

- Scand. 15, 1761 (1961). For review on Ullmann Coupling see P. E. Fanta, Chem. Rev. 613-32 (1964).
- *A. I. Scott, Ultraviolet Spectra of Natural Compounds, pp. 138-139. Pergamon Press, Oxford, England (1964).
- ¹⁰B. G. Pring and N. E. Stjernström, Acta Chem. Scand. 22, 549 (1968)
- 11S. Forsen and N. E. Stjernström, Arkiv. Kemi. 21(7), 65 (1963).
- ¹²G. Germain, P. Main and M. M. Woolfson, Acta Cryst. A27, B68 (1971).
- ¹³C. K. Johnson, Ortep, Report ORNL, 3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1965).
- ¹⁴For detailed experimental procedures, see references 5 and 6.
 ¹⁵A. I. Vogel, A Textbook of Practical Organic Chemistry, 3rd Edn, p. 971. Longmans, Green, New York (1965).